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Abstract. We have studied the transmission resonances for a confined array of antidots, using the lattice
Green’s function method. Two kinds of resonant peaks via quasibound states are found. One kind of
resonant peak corresponds to the split quasibound states. The split states originate from the superposition
of quasibound states respectively localized in different (T or crossed) junctions, while the number of
quasibound states in each junction is associated with the arm-width of the junction. Electrons in these
split states are mainly localized in the junctions. The other kind of resonant peaks correspond to the high
quasibound states which exist in (transverse and longitude) multi-period confined arrays of antidots. It
is interesting to note that electrons in some of the high quasibound states are mainly localized in the
intersection of the junctions rather than in the junctions themselves.

PACS. 73.22-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and
nanocrystals – 73.20.-r Electron states at surfaces and interfaces

1 Introduction

Sophisticated modern growth technologies allow the con-
struction of various mesoscopic structures [1] such as
quantum wires and quantum dots, where carrier motion
may be confined in at least one dimension. Because of
the confinement effect, many interesting quantum phe-
nomena are observed. One of them is the existence of
quantum bound states in some classically unbound struc-
tures [2–10]. By calculating the energies and wave func-
tions for an electron in crossed channels of infinite length,
Schult et al. [2] have found quantum bound states in a
crossed junction. Both experiment and theoretical calcula-
tions have indicated that in T-shaped [3] or L-shaped [4,5]
channel(s) with infinite length, there can also exist one lo-
cal bound state at the junction below the first transverse-
mode energy. When the channels are sufficiently short,
the quantum bound state localized in the junction couples
to the continuous states and then becomes a quasibound
state [6]. Thus, resonant tunneling via the quasibound
state can occur [7]. This will bring about a resonant peak
in conductance below the threshold of the first conduc-
tance plateau. For system which include more than one
(crossed, T-shaped or L-shaped) junction, the interac-
tion between the quasibound states localized in the differ-
ent junctions is an interesting problem. Using the mode-
matching technique, Wang et al. [8] studied the quantum
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bound states in a double-bend quantum channel of finite
length connected to two two-dimensional (2D) electron
gas reservoirs. It was found that there exists one reso-
nant peak in conductance corresponding to one quasi-
bound state for the quantum channel with double-bend
continuity, and there exists two resonant peaks in con-
ductance corresponding to two quasibound states for the
quantum channel with double-bend discontinuity. The two
quasibound states are symmetric and antisymmetric su-
perpositions of two local bound states localized at two
right-angle bends. Energies of these quasibound states are
below the first conductance plateau. Ballistic transport in
various nanostructures was studied by Ji and Berggren [9].
They showed that the bound states below the first sub-
level split into several bound states due to the coupling of
bound states in narrow ballistic channels with a few inter-
sections. The number of split bound states is correlated
with the number of intersections of the 2D semiconductor
structure. Most of the former studies are focused on dis-
cussing the transmission resonance via the lowest energy
quasibound state (ground state) localized in a relatively
simple structure, however, high quasibound states will also
induce transmission resonance [11] and many interesting
transport properties are related to these states [12].

In this paper, we study transmission resonances via
(ground and higher) quasibound states for a confined ar-
rays of antidots (see Fig. 1), using the lattice Green’s
function method [13–16] We calculate conductance as a
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Fig. 1. Schematic view of the model, in which confined arrays
of m(row)×n(column) antidots are connected to the left and
right leads. The squarelike antidots with electron potential P
and dimensions Lx and Ly are placed with an equal trans-
verse separation Wy and longitude separation Wx in a narrow
constriction of width W .

function of electron energy for different geometries. The
resonant peaks in conductance are associated with quasi-
bound states which are shown by contour plots of proba-
bility density distribution. We discuss the influence of the
separation between antidots arranged in lines on the qua-
sibound states and the split states. The results indicate
that the number of these states increases with the sepa-
ration. The effects of the periodic increase of antidots in
transverse and longitudinal directions on the high quasi-
bound states are also discussed. Some interesting quasi-
bound states in which electrons are localized in the inter-
section of the junctions rather than in the junctions have
been found.

2 Model and method

Let us consider a finite-antidot array in a confined geom-
etry which is connected to the left and right leads with
width W (see Fig. 1). The antidots (black square area)
have been modeled by squarelike potential barriers of size
Lx×Ly and height P . The longitude and transverse sepa-
ration between the antidots are Wx and Wy, respectively.
Experiments on such systems have been carried out by
Schuster et al. [17] In terms of a recursive Green’s function
(RGF) [13,14] scheme, one divides the system into a set
of effective square lattices with lattice constant a. Hard
wall boundaries are simply simulated by the absence of
sites. To describe the electronic properties of the effective
discretized system of a square lattice, one can define the
tight-binding Hamiltonian [13]:

H =
∑

i,j

(εi,j +Pi,j) |i, j〉 〈i, j|+
∑

i,j

V (|i, j〉 〈i, j + 1|+H.c.)

+
∑

i,j

V (|i + 1, j〉 〈i, j| + H.c.), (1)

where εi,j is the site energy and Pi,j is additional po-
tential at (i, j) site, and V are hopping matrix elements
between the nearest neighboring sites respectively. Gener-
ally, εi,j = −4V and V = −�

2/2m∗a2 (m∗ = 0.067m0 is
the effective mass of an electron). We rewrite the Hamil-
tonian in units of column cell as

H =
∑

i

Hi +
∑

i

(Hi,i+1 + Hi+1,i), (2)

where Hi is the Hamiltonian of the ith isolated column
cell, Hi,i+1 and Hi+1,i are intercell Hamiltonian between
the ith column cell and (i + 1)th column cell with

Hi+1,i =
∼
H

∗
i,i+1 . (3)

So the first two terms of equation (1) correspond to the
first term of equation (2) and the last term of equation (1)
corresponds to the second term of equation (2).

In terms of definition of Green’s function G = (E −
H)−1, we construct the diagonal and off-diagonal Green’s
function by

〈i|Gi |i〉 = 〈i| (E − Hi) |i〉−1
, (4)

〈i|Gi |1〉 = 〈i| (E − Hi) |1〉−1
,

where E (in units of −V ) is the electron energy, Hi is
the total Hamiltonian for the strip comprising the 1th
to ith column cells. In particular, 〈1|G1 |1〉 of the 1th
column cell and 〈N + 1|GN+1 |N + 1〉 of (N + 1)th col-
umn cell represent Green’s functions of the left and right
leads respectively. So 〈N + 1|G |1〉 represents the system-
atic Green’s function which couples those from the 1th to
the (N + 1)th column cell. According to the Dyson equa-

tion G = G0 + G0
∧
V G, a set of recursive formulas can be

obtained [14]

〈i + 1|Gi+1 |i + 1〉−1 = E−Hi+1−Hi+1,i 〈i|Gi |i〉Hi,i+1,

(5)

〈i+1|Gi+1 |1〉 = 〈i + 1|Gi+1 |i+1〉Hi+1,i 〈i|Gi |1〉.
(6)

We start recursion from 〈1|G1 |1〉. According to equa-
tion (5), the following sequences of Green’s functions:
〈1|G1 |1〉 → 〈2|G2 |2〉 → · · · → 〈N |GN |N〉 can be gen-
erated. Substituting these Green’s functions into equa-
tion (6), we can obtain 〈2|G1 |1〉 → 〈3|G2 |1〉 → · · · →
〈N |GN |1〉 in turn. In the final recursion step we at-
tach the right lead, and then obtain the Green’s function
〈N + 1|G |1〉.

The Green’s function 〈N + 1|G |1〉 allows us to cal-
culate the transmission coefficient T of the two-terminal
system [13,14]. Then conductance G is represented by
Landauer-Buttiker formula

G =
2e2

h
T. (7)
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Fig. 2. Calculated conductance as a function of electron energy for the simplest array in the insert of (a), which includes
two antidots with separation Wx. (a) Wx = 2, (b) Wx = 6, (c) Wx = 12, (d) Wx = 18. Other parameter of the structure is
Lx = 10, Ly = 10, Wy = 6 and P = 50. The dotted line represents the first threshold energy E1 = �

2π2/2m∗W 2
y . (The length is

in units of lattice constant a and the energy is in units of −V.)

To calculate the eigen-energy E of the structure and cor-
responding wave function Ψ, we write the Hamiltonian of
the system as

H = H0 + Σ, (8)

where H0 is the total Hamiltonian of the antidot array
associated with equation (1), Σ is the total self-energies of
the two leads [14]. Solving the eigen-equation HΨ = EΨ ,
one can obtain the eigen-energy E and wave function Ψ . In
general, the eigenvalue is complex, whose imaginary part
is associated with the lifetime of the eigenstate.

3 Results and discussion

We first consider an element array including two longi-
tude antidots, as shown in the insert of Figure 2a. There
are two T junctions in the middle region of the struc-
ture. In Figure 2, the calculated conductance for the sim-
plest confined array with different longitude separation
Wx of antidots are presented. For narrower separation,
only one high resonant peak with value 2 (2e2/h) appears
in conductance just below the first threshold energy E1

(E1 = �
2π2/2m∗W 2

y ) (see Fig. 2a). As the separation is
increased to Wx = Wy, Figure 2b shows that there are
two peaks with value 1 (2e2/h) in conductance. Compar-
ing with the peak in Figure 2a, the two peaks shift to
low energy. With wider separation, more resonant peaks
appear in the conductance below the threshold energy,
as shown in Figures 2c and 2d, and the first two peaks
further shift to lower energy with an enlarged distance
between them. The results can be explained by the char-
acter of the quasibound states localized in the confined
array. It is well known that, as the arm of a (crossed or
T) junction changes from infinite length to finite length,
the bound state localized in the junction will develop into
a quasibound state. This will induce resonant tunneling
via the quasibound state. When the separation between
antidots is narrower, only one quasibound state exists in

 

 

 

Fig. 3. Contour plots of probability density distribution of the
quasibound state (a) corresponding to the first resonant peak
with E = 0.1217 in Figure 2b, (b) corresponding to the second
resonant peak with E = 0.1327 in Figure 2b, (c) corresponding
to the third resonant peak with E = 0.1032 in Figure 2d, (d)
corresponding to the fourth resonant peak with E = 0.1343 in
Figure 2d. The innermost contour curve possesses the highest
probability density and the shaded areas represent antidots.

each T junction and the wave function of the state hardly
penetrates to the lateral arm (the intersection of the two
T junctions). So the two quasibound states respectively
localized at the upper and below T junctions are indepen-
dent, i.e., without interaction. In this case, the two states
have the same energy while the resonant peaks induced by
them superpose into a high peak in the conductance pro-
file. As the separation Wx becomes wide, the wave func-
tions of the two quasibound states can deeply extend into
the lateral arm. Then interaction between the two states
occurs. Due to the symmetric and antisymmetric super-
position of the two wave functions, two-fold split states
with different energies are formed in the confined array.
We respectively depict in Figures 3a and 3b the contour
plots of probability density of the two split states. The
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Fig. 4. Calculated conductance as a function of electron energy
for confined arrays including n longitude antidots with Wx = 8.
(a) n = 2, (b) n = 3, (c) n = 4, (d) n = 5. Other parameters of
the structure are Lx = 10, Ly = 10, Wy = 6 and P = 50.
The dotted line represents the first threshold energy E1 =
�

2π2/2m∗W 2
y . (The length is in units of lattice constant a and

the energy is in units of −V.)

energy difference of the two states is proportional to the
strength of interaction between the states, while the av-
erage energy is equal to the energy of quasibound states
in a single junction [8]. Corresponding to the two states,
two resonant peaks appear in Figure 2b. In addition, the
energy of a quasibound state in a single T junction de-
creases with the increase of the lateral-arm width [18]. So
the wider separation leads to the two peaks in Figure 2b
shifting to low energy. As one continues to increase the
separation Wx, on one hand, it increases the energy dif-
ference of the two split bound states since the distance of
the first two peaks in conductance is wider, on the other
hand, high quasibound states will exist in each T junc-
tion except the ground state. The interaction of the high
quasibound states forms high split states. In Figure 2d,
the third and the fourth peaks correspond to two high
split states, which are induced by the interaction of the
second lowest quasibound state localized in each junction.
Figures 3c and 3d display the contour plots of probability
density of the two higher quasibound states corresponding
to the third and fourth resonant peak in Figure 2d, re-
spectively. One can see that the two states are odd-parity
states whose wave functions are taken to be odd symmetry
to the center line of the T junction, while the two states
in Figure 3a and 3b are even-parity states. As a result,
increasing the wider separation Wx causes more resonant
peaks via higher split states emerging in the conductance
profiles, and the position of peaks shift to low energy.

In Figure 4, we show the conductance as a function
of electron energy for the confined array including n pe-

Fig. 5. Contour plots of probability density distribution of the
quasibound states corresponding to the five resonant peaks in
Figure 4b (a) corresponding to the first resonant peak with
E = 0.0932, (b) corresponding to the second resonant peak
with E = 0.0967, (c) corresponding to the third resonant peak
with E = 0.1159, (d) corresponding to the fourth resonant
peak with E = 0.124, (e) corresponding to the fifth resonant
peak with E = 0.1760. The innermost contour curve possesses
the highest probability density and the shaded areas represent
antidots.

riodic antidots in a longitudinal direction. As Wx = 8,
only a quasibound state is localized in each T-junction.
So, when n = 2, there are two resonant peaks via the split
states appearing in conductance below the threshold en-
ergy (Fig. 4a). When the confined array consists of three
longitude antidots (n = 3), the structure has four T junc-
tions. In each two transverse T junctions, there exist two
split states. Due to the longitude symmetric and antisym-
metric superposition of the split states, each split state
localized in two transverse T junctions further splits into
two new split states. Accordingly, each peak in Figure 4a
splits into two peaks in Figure 4b. In Figures 5a–5d the
contour plots of probability density of the four new split
states corresponding to the first four resonant peaks in
Figure 4b are displayed. It is clearly seen that the new
split states displayed in Figures 5a and 5b are formed by
symmetric and antisymmetric superposition of two states
depicted in Figure 3a, while the states displayed in Fig-
ures 5c and 5d are formed by symmetric and antisymmet-
ric superposition of the two states depicted in Figure 3b.
Electrons in these split states are mainly localized at the
junctions. In addition, in the high energy region a reso-
nant peak appears at the edge of the first conductance
plateau in Figure 4b. This resonant peak is induced by a
high quasibound state which contour plot of probability
density is displayed in Figure 5e. It is interested to see
that the electrons in this state are not localized at the T
junctions but at the intersections of T junctions. When
the structure includes more antidots, more split states lo-
calized in each two transverse T junctions are added to
the structure. The interaction of the split states lead to
each split state in the case n = 2 splitting into n−1 states.
So there are 2(n− 1) peaks via 2(n− 1) split states in the
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Fig. 6. Calculated conductance as a function of electron energy
for confined arrays including m(row)×2(column) antidots with
Wx = 8. (a) m = 1, (b) m = 2,(c) m = 3,(d)m = 4. Other
parameters of the structure are Lx = 10, Ly = 10, Wy = 6 and
P = 50. The dotted line represents the first threshold energy
E1 = �

2π2/2m∗W 2
y . (The length is in units of lattice constant

a and the energy is in units of −V.)

conductance below the first threshold energy (see Figs. 4c
and 4d). While n−2 resonant peaks via higher quasibound
states appear at the edge of the first conductance plateau.
It can be expected that, as n is large, the conductance for
the finite periodic array will form a miniband and mini-
gap structure, and the resonant peaks are related to the
miniband.

The influence of the periodic increase of antidots in
the transverse direction on the resonant peaks is then con-
sidered. In Figure 6, we present the conductance for the
confined array including m(row)×2(column) antidots. As
the array consists of two rows of antidots (m = 2), there
are two T junctions and one crossed junction in the struc-
ture. It is seen that the conductance profile in Figure 6b
exhibits three resonant peaks below the threshold energy.
The peaks are induced by the three quasibound states
localized in the three junctions. The energy of the qua-
sibound state in a crossed junction is lower than that in
a T junction, as the crossed and T junctions have the
same-width arms. So the first peak corresponds to the
quasibound state localized in the crossed junction, while
the latter two peaks are induced by two split states lo-
calized in the T junctions. Figures 7a–7c display respec-
tively the contour plots of probability density distribution
of the three states. The existence of the crossed junction
weakens the interaction of the upper and lower T-shaped
quasibound states, thus, comparing with the two peaks
in Figure 6a, the second and the third resonant peaks in

Fig. 7. Contour plots of probability density distribution of the
quasibound states corresponding to the four resonant peaks in
Figue 6b. (a) corresponding to the first resonant peak with
E = 0.0802, (b) corresponding to the second resonant peak
with E = 0.1027, (c) corresponding to the third resonant peak
with E = 0.1123, (d) corresponding to the fourth resonant
peak with E = 0.1584. The innermost contour curve possesses
the highest probability density and the shaded areas represent
antidots.

Figure 6b become closer. In addition, in the higher energy
region, we can find a resonant peak via a high quasibond
state whose contour plots of probability density is depicted
in Figure 7d. From Figures 7a to 7d, the wave functions
are in turn taken to be even- and odd-symmetry about
the parallel center line of the crossed junctions, which is
due to symmetric potential distribution and the hard walls
of up and lower boundaries. The electrons in the former
three quasibound states are mainly localized in the junc-
tions while electrons in the fourth quasibound states are
mainly localized at the intersections of these junctions. So
the fourth state belongs to the whole structure rather than
any single junction. As the confined array includes m row
antidots, there are m−1 crossed junctions in the structure.
Due to the interaction of local states in the m− 1 crossed
junctions, m− 1 split states are formed and thus the first
resonant peak in Figure 6b splits into m − 1 peaks (see
Figs. 6c and 6d). At the same time, more crossed junctions
further weaken the interaction of the local states in the
two T junctions, leading to the two resonant peaks via the
T split states becoming closer. Moreover, with the trans-
verse increase of the space between two column antidots,
the energy of the high quasibound states decreases and
more higher quasibound states will exist in the structure.
This results in more resonant peaks appearing around the
first threshold energy.

In Figure 8, we depict the conductance as a function
of electron energy for the confined array including multi-
row (m = 3) and multi-column n antidots. It is found
that the resonant peaks in conductance can be divided
into three groups. The first group located at the lowest
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Fig. 8. Calculated conductance as a function of electron energy
for confined arrays including 3(row)× n(colum) antidots with
Wx = 8. (a) n = 2, (b) n = 3, (c) n = 4, (d) n = 5. Other
parameters of the structure are Lx = 10, Ly = 10, Wy = 6 and
P = 50. (The length is in units of lattice constant a and the
energy is in units of −V.)

energy range has (m−1)× (n−1) peaks corresponding to
(m− 1)× (n− 1) split quasibound states mainly localized
in the (m − 1) × (n − 1) crossed junctions. The second-
group peaks are mainly induced by the interaction of the
2(n−1) local T-shaped quasibound states, and the number
of peaks will be equal to 2(n − 1), i.e., the number of
T junctions. The third group of peaks appear at around
the first threshold energy. These peaks correspond to the
high quasibound states which are induced by transverse
and longitude periodic increase of antidots. Electrons in
these states have high probabilities of being localized at
the intersection of junctions.

4 Conclusions

By using the lattice Green’s function method, we have
studied the resonant peaks via the quasibound states for a
confined array of antidots. Split quasibound states will be
formed through symmetric and antisymmetric superposi-
tion of quasibound states in different junctions, while the
number of quasibound states in a single junction is related
to the separation of longitude antidots. As the confined
array consists of n (crossed and T) junctions and each
junction only has one quasibound state, n resonant peaks
via the n split states appear in the conductance below

the first threshold energy. Electrons in these split states
are mainly localized in the junctions. In the high energy
region (around the first threshold energy), some resonant
peaks via higher quasibound states are also found. The
number of the higher quasibound states is associated with
the periodic number of antidots and geometry. Electrons
in the some of these quasibound states are not localized
at the junctions but at the intersections of the junctions.

This work was supported by Major Project of State Ministry
of China (Grant No. 204099) and the Project Supported by
Scientific Research Fund of Hunan Provincial Education De-
partment (No. 02C572).
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